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A B S T R A C T

Purpose: The aim of this study was to present the current concept of bone quality based on the proposal by
the National Institutes of Health (NIH) and some of the cellular and molecular factors that affect bone
quality.
Study selection: This is a literature review which focuses on collagen, biological apatite (BAp), and bone
cells such as osteoblasts and osteocytes.
Results: In dentistry, the term “bone quality” has long been considered to be synonymous with bone mineral
density (BMD) based on radiographic and sensible evaluations. In 2000, the NIH proposed the concept of
bone quality as “the sum of all characteristics of bone that influence the bone’s resistance to fracture,” which
is completely independent of BMD. The NIH defines bone quality as comprising bone architecture, bone
turnover, bone mineralization, and micro-damage accumulation. Moreover, our investigations have
demonstrated that BAp, collagen, and bone cells such as osteoblasts and osteocytes play essential roles in
controlling the current concept of bone quality in bone around hip and dental implants.
Conclusion: The current concept of bone quality is crucial for understanding bone mechanical functions.
BAp, collagen and osteocytes are the main factors affecting bone quality. Moreover, mechanical loading
dynamically adapts bone quality. Understanding the current concept of bone quality is required in
dentistry.
© 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Bone tissue, which plays an essential role in skeletal
homeostasis, responds to mechanical load. A well-known anato-
mist Georg Hermann von Meyer and a structural engineer and
mathematician Karl Culmann discovered marked similarity
between the trabecular structure of the proximal femur and
stress trajectory patterns in 1867 [1]. Julius Wolff also found an
association between trabecular morphology and stress trajectories
in 1869 [2,3]. This famous theory is referred to as “Wolff’s law,”
which indicates bone adaptation to mechanical load [4]. For
instance, bones of the stroke forearm and hand increase bone
density, diameter, and length compared with those of the
contralateral arm of professional tennis players [5]. Moreover,
athletes, who perform much strength training, have greater bone
mineral densities (BMDs) than non-athletes [6]. Conversely,
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although astronauts who had been in space 4–6 months demon-
strated decreased bone mass ranging 2–9%, their BMDs recovered
up to 50% within 9 months after returning to Earth due to gravity
[7]. Therefore, mechanical load positively and negatively changes
skeletal bone mass (bone quantity) and BMD.

Another famous theory, “mechanostat,” was proposed by Harold
Frost in 1987 [8]. This theory states that bone strains induced by
mechanical load determine bone reactions. Bone strains �1500–
3000 microstrain induce bone modeling to increase cortical bone
mass, while strains <100–300 microstrain rapidly proceed basic
multicellular unit (BMU)-based remodeling, which removes existing
corticaland trabecularbone.BMUcouples initialbone resorptionto a
final bone formation process. Normal lamellar bone is fractured
when bone strain reaches 25000 microstrain [9]; 1000 microstrain
indicates bone length change of 0.1% compared with the original
length.Bonestrains areconvertedtovarious mechanicalstimulisuch
as fluid shear stress [10,11], hydrostatic pressure [12], and direct
deformation of osteocytes that reside in the bone matrix [13–15],
which suggest that osteocytes, but not bone itself, regulate bone
homeostasis in response to mechanical load.
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Until 2000, bone strength was considered to be synonymous
with BMD. However, a new clinical parameter, “bone quality,” was
proposed by the National Institutes of Health (NIH) in 2000 [16].
Bone quality, which is defined as “the sum of all characteristics of
bone that influence the bone’s resistance to fracture” is
completely independent of BMD. Therefore, to determine bone
strength, not only BMD but also bone quality must be evaluated. A
lower BMD induces greater fracture risk in bone [17]. However,
the relationship between increased BMD by antiresorptive
therapy and reduced fracture risk is not proportional [18],
indicating that increased BMD does not always lead to decreased
fracture risk. The NIH defines bone quality as comprising bone
architecture, bone turnover, bone mineralization, and micro-
damage accumulation [19] (Fig. 1). In addition, recent inves-
tigations have proposed novel and promising bone quality
parameters focusing on the bone microstructure such as
osteocytes, biological apatite (BAp), and collagen fibers. Indeed,
Nakano et al. proposed that BAp orientation is one of the major
determinants of bone quality because BAp orientation strongly
depends on the anatomical bone portion, especially in mandible,
closely related to the in vivo stress distribution [20]. In addition,
Ishimoto et al. clearly demonstrated that degree of BAp orientation
is more strongly correlated with bone strength than BMD using a
regenerative bone defect model in rabbit ulna [21]. Kuroshima
et al. demonstrated that osteocytes, BAp, and collagen fibers could
become new clinical parameters to evaluate bone quality in
implant dentistry [22], suggesting that understanding bone
quality is clinically relevant.

In dentistry, the effect of mechanical load on jaw bone has
been well documented. Jaw bones constitutively receive func-
tional loads such as mastication and swallowing and parafunc-
tional loads such as grinding, clenching and tapping. Mandibular
and palatal tori, which are bone outgrowths, are associated with
mechanical stresses such as functional and parafunctional loads
[23,24]. Orthodontic force via natural teeth dynamically proceeds
bone modeling and remodeling around the teeth [25]. Occlusal
force often acts as traumatic occlusion in patients with
periodontitis, resulting in the destruction of periodontal tissue
and alveolar bone [26]. Moreover, it is believed that occlusal
overload may lead to bone loss around stable dental implants
[27]. Some of the confusion surrounding the term “bone quality”
is that this term has already been used in dentistry. In contrast to
the current concept of “bone quality,” which is independent of
BMD, “bone quality” in dentistry has largely been synonymous
with BMD based on radiographic and sensible evaluations [28–
30]. Although, the paradigm of bone quality has already shifted
from BMD-based assessments to microstructural evaluations of
bone, BMD-based diagnosis remains the gold standard in
dentistry. Hence, accepting and understanding the current
concept of bone quality is actually required in dentistry. However,
further research based on this concept of bone quality is
necessary prior to its clinical application in prosthodontic
dentistry.

The aim of this literature review is to present the current
concept of bone quality according to collagen, BAp orientation, and
bone cells, such as osteoblasts, and osteocytes, to consider bone
strength in dentistry and discuss innovative dental research based
on the current concept of bone quality.

2. Bone quality based on collagen

2.1. Collagen in bone

Collagen is the main component of bone organic constituents.
The composition and structure of collagen components have long
been recognized as important contributors to bone quality
[31–33]. The importance of collagen components in bone
mechanical properties has been demonstrated through irrevers-
ible collagen manipulations, such as formalin fixation [34], heat
denaturation [35,36], and X-ray irradiation [37,38]. Studies
demonstrate that collagen manipulations affect bone mechanical
properties; collagen contributes predominantly to bone toughness,
whereas mineral contents contribute to stiffness and strength
[39–41].

Osteogenesis imperfecta (OI) is a genetic bone disorder
characterized by fragile bones. Approximately 90% of OI cases
are caused by dominant mutations in the genes encoding type I
collagen (i.e., COL1A1 and COL1A2), which affects the amount and
structure of bone collagen. It has been reported that polymor-
phisms in type I collagen genes increase the risk of fractures,
independent of changes in BMD [42]. For many years, no causative
genes were identified for the remaining 10% of OI cases; however,
other mutations causing recessive forms of OI have been recently
discovered. Part of them are genes related to post-translational
modifications of type I collagen [43].

2.2. Post-translational modifications of type I collagen

Type I collagen comprises approximately 90% of the organic
component of bone. It is also the major protein in the skin, tendons,
ligaments, cornea, and blood vessels. Although type I collagen is
the predominant organic component in these tissues, the
characteristics of these tissues, including mechanical properties,
vary. Such differences occur, at least partially, because of differ-
ences in the post-translational modifications of type I collagen,
which determine variances in covalent cross-linking patterns [44].

Biosynthesis of type I collagen is a long and complex process
that includes a series of post-translational modifications [45].
Intra- and extra-cellular post-translational modifications are
crucial to the formation of covalent cross-links and the function
of collagen fibrils. A number of unique collagen-modifying
enzymes and molecular chaperones are involved in these
processes [46,47]. Various factors affect post-translational mod-
ifications of type I collagen, including aging [48], systemic diseases
(e.g., osteoporosis, osteopetrosis, OI, and diabetes) [32,49], and
mechanical stress [50–54].

Lysine hydroxylation of specific lysine residues in type I
collagen are regulated by a family of enzymes called lysyl
hydroxylases (LHs), which have three isoforms (LH1-3). Substrate
specificities of LHs are still not clearly established; however,
accumulating evidence indicates that LH1 is triple-helix specific,
LH2 is telopeptide specific, and LH3 is a multi-functional enzyme
with LH, hydroxylysyl galactosyltransferase, and galactosylhy-
droxylysyl glucosyltransferase activities. Collagen cross-linking
forms among the specific lysine or hydroxylysine residue either at
the triple-helical or telopeptide region; therefore, lysine hydrox-
ylation is crucial for the determination of the cross-link types. The
extent of lysine hydroxylation in type I collagen varies from tissue
to tissue and pathophysiological conditions [45,55,56].

PLOD2, which encodes a telopeptide-specific LH2, is a causative
gene for Bruck syndrome, which is characterized by osteoporosis,
joint contracture at birth, fragile bones, and short stature due to
under hydroxylation of lysine residues in telopeptides of type I
collagen in bone. However, cartilage and ligament collagen show
normal hydroxylation of telopeptide lysine and normal cross-
linking patterns [57,58]. In line with this observation, it has
recently been reported that the expression of LH2 increases in
response to mechanical loading on the bone-associated, but not
the cementum-associated, side of the periodontal ligament [53].
FKBP65, a peptidyl-prolyl cis-trans isomerase, is essential for the
dimerization and enzymatic activity of LH2. In addition, mutations



Fig. 1. The current concept of “bone quality.” Bone quality, which has been defined as “the sum of all characteristics of bone that influence the bone’s resistance to fracture” is
completely independent of bone mineral density. The National Institutes of Health defines bone quality as comprising bone architecture, bone turnover, bone mineralization,
and microdamage accumulation. Bone architecture mainly consists of biological apatite, collagen fibers, and bone cells such as osteocytes, osteoblasts, and osteoclasts.
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in the FKBP10 gene, which encodes FKBP65 protein, result in
similar pathology as LH2 deficiency and diminished hydroxylation
of telopeptide lysine residue in bone type I collagen [59,60]. These
results support the concept that LH activity regulates lysine
hydroxylation and subsequent cross-linking patterns in a tissue-
specific manner.

2.3. Collagen cross-linking

Collagen cross-linking is one of the major determinants of bone
quality and is associated with bone mechanical properties;
therefore, it is considered an important predictor of bone fracture
risk [44,61–63]. There are two distinct types of collagen cross-
linking, enzymatic and non-enzymatic cross-linking. Non-enzy-
matic cross-linking, including advanced glycation end products
(AGEs), are known to affect bone mechanical properties. Moreover,
non-enzymatic cross-linking occurs spontaneously through gly-
cation, not through collagen biosynthesis. Therefore, non-enzy-
matic cross-linking is not discussed in this article.

As discussed earlier, the activity of LHs determines the tissue-
specific cross-linking type, while lysyl oxidase (LOX) controls the
amount of enzymatic cross-linking. The importance of enzymatic
collagen cross-linking in tissue development and maintenance has
been examined using lathyrogens, such as aminoacetonitrile and
beta-aminopropionitrile (BAPN), which irreversibly inhibit LOX
activity [53,61,63]. In a previous animal study, 4 weeks of daily
intraperitoneal injection of BAPN induced a 45% reduction of
pyridinium cross-link content, resulting in a 26% reduction in the
bending strength of rat femurs [61]. Further, it was recently
reported that 3 weeks of dose-controlled intraperitoneal adminis-
tration of BAPN inhibited collagen cross-linking and reduced bone
strength, while no significant changes were observed in BMD [63].
These results clearly demonstrate the significance of enzymatic
covalent cross-linking in bone mechanical properties, independent
of BMD.

It has been elucidated that not only the expression of LOX itself,
proteolytic cleavage and interaction with other extracellular
molecules also regulate LOX activity. Periostin is a matricellular
protein preferentially expressed in collagen-rich fibrous connec-
tive tissues, including bone, that coordinates the regulation of bone
morphogenetic protein 1-mediated proteolytic cleavage of pro-
LOX to active LOX [64]. Fibromodulin, a member of small leucine-
rich proteins, is known to interact with collagen and affect collagen
cross-linking, molecular packing, and fibril diameter [65]. Recently,
ithasbeenreportedthatfibromodulin formsacomplexwithLOX and
targets specific cross-linking sites of type I collagen [66]. These
results suggest that tissue-specific expression of non-collagenous
proteins may also participate in the tissue-specific pattern of
collagen cross-linking.

Collagen cross-linking sites reportedly correlate with the
molecular packing of collagen fibrils and subsequent nucleation
of BAp [67]. Although the bio-mineralization process has been
thought to be directed by acidic non-collagenous proteins, such as
small integrin-binding ligand N-linked glycoprotein [68], it has
been reported that type I collagen can initiate bio-mineralization
in the absence of any other extracellular matrix molecules in vitro
[69]. Currently, the significance and detailed mechanism of
collagen cross-linking in the mineralization process remains
unclear; however, it is possible that changes in collagen cross-
linking may affect the inorganic phase of bone by controlling
mineral nucleation.

Collagen cross-linking primarily stabilizes collagen molecules
and has long been recognized as one of the major determinants of
bone mechanical properties. A clinical study demonstrated a
correlation between collagen cross-linking and bone fracture risk
[62]. In addition, altered collagen cross-linking is frequently
observed in aging and many systemic diseases [33,48,49] due to
inappropriate post-translational modifications of collagen. It has
been reported that impaired cross-linking in collagenous matrix
affects osteoblast differentiation [70,71], indicating that collagen
cross-linking also affects tissue turnover, which is another important
determinant of bone quality. Therefore, the quantification and
characterization of collagen cross-linking in bone may be useful for
the diagnosis and understanding of bone status.

In summary, collagen cross-linking is an important determinant
of bone quality by affecting bone fragility. Recent studies have
partly clarified the regulatory mechanisms of tissue-specific cross-
linking patterns of type I collagen. Notably, collagen characteristics
of jaw bones could differ from those of long bones [72], although
most of the accumulated knowledge regarding bone collagen is
based on studies using long bones. Further, collagen cross-linking
is not just an architectural component of bone; it most likely affects
tissue turnover, micro-crack propagation, and mineral nucleation,
all of which influence bone strength (Fig. 2). Detailed studies
exploring the kinetics of tissue-specific post-translational mod-
ifications of type I collagen will aid in the diagnosis and
understanding of bone status, including mechanical properties,
in health and disease.



Fig. 2. Collagen as a template of bone. (a) Bone is a two-phase composite material composed of mineral and organic phases. Type I collagen is the major component of the
organic phase. (b) Enzymatic cross-linking binds neighboring collagen molecules to form collagen fibrils, which is a template of bone. (c) Bone mineral density accounts for
60% of bone strength while bone quality accounts for the rest. Collagen cross-linking is not just a determinant of bone quality; it also affects tissue turnover, micro-crack
propagation, and mineral nucleation, all of which influence bone strength.
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3. Bone quality based on biological apatite (BAp)

3.1. Crystallographic texture and preferential orientation of BAp
crystals and collagen molecules in bone

It is well recognized in the field of materials science that
crystallographic texture and orientation – orderly arrangement of
atoms, ions, and molecules – strongly affect the mechanical and/or
functional properties of materials, including metals, ceramics,
polymers, and combinations thereof. For example, BAp, a major
inorganic component of bone, has a hexagonal crystal system that
normally demonstrates greater anisotropy than materials with the
cubic crystal system. In fact, BAp shows anisotropy in intrinsic
mechanical properties such as Young’s modulus. Nanoindentation
studies of single hydroxyapatite crystals show that Young’s
modulus along the c-axis is greater than that along the a-axis
[73]; this is attributed to the anisotropic arrangement of its
constituent ionic atoms. BAp and collagen in bones are known to
have unique crystallographic textures according to anatomical
bone position [20], which have been clarified using diffractometer
with X-rays, neutrons, and electrons [74]. Due to epitaxial
crystallization of BAp on the collagen template through an in vivo
self-assembly process [75], the crystallographic c-axis of BAp
aligns almost parallel to the collagen fiber direction, forming an
oriented nanocomposite, which makes bone stiff and tough in the
extracellular matrix-oriented direction (Fig. 3). Hence, the degree
of directionality of the BAp c-axis should be a determinant of bone
mechanical property and its anisotropy.

Indeed, the three-dimensional BAp c-axis orientation distribu-
tion appears to correspond to in vivo distribution of principal
stress. This is well explained using mandibular bone that is subject
to complicated mechanical environments. The cortical bone
portion apart from the tooth, such as corpus mandibulae,
essentially exhibits a unidirectional preferential BAp c-axis
orientation along the mesiodistal axis [20,74,76]. Conversely, the
portion located beneath the tooth exhibits preferential BAp c-axis
orientation along the biting axis (Fig. 4) [20]. In this case, the BAp
orientation was analyzed utilizing microbeam X-ray diffraction
(mXRD), which mirrors the orientation of collagen fibers by co-
alignment with them. It is clear that the direction of the
preferential BAp c-axis orientation agrees with that of principal
stress generated by muscles that sustain the mandible and are
involved in biting. In addition, long bone and parietal bone show
uniaxial and planar orientation along the bone long axis and flat
bone surface, respectively [20], which further supports the
directional agreement between principal stress and preferential
BAp c-axis orientation.

3.2. Contribution of the BAp c-axis orientation to bone mechanical
property-validity as a bone quality parameter

To demonstrate the contribution of the BAp c-axis orientation
to bone mechanical property, a bone regeneration model to
analyze the recovery (change) of BAp orientation, as well as
mechanical property, was prepared using rabbit ulna. The degree
of BAp c-axis orientation as a candidate for bone quality parameter,
BMD as a conventional and standard criterion for bone strength,
and Young’s modulus as an important parameter for mechanical
property were analyzed by mXRD, peripheral quantitative com-
puted tomography, and nanoindentation, respectively [77]. The
BAp orientation and Young’s modulus were analyzed along the
ulnar long axis in which the bone is principally loaded and the BAp
c-axis preferentially orients.

In the ulnar regeneration process, BMD almost fully recovered
by 12 weeks after osteotomy at which the degree of BAp
orientation along the ulnar long axis was quite low compared to
the intact value. In the following 12 weeks, the BAp orientation
significantly restored to the intact level. Young’s modulus at
postoperative 12 weeks showed approximately 60% recovery
despite full recovery in BMD [21]. These results clearly suggest
that BMD alone is insufficient for determining bone strength.
Many studies have indicated the limited capability of BMD alone
for the determination of bone mechanical properties [78–80].
Correlation and multiple regression analyses revealed that the
degree of BAp c-axis orientation had a more significant contribu-
tion to Young’s modulus than BMD [21]. This finding explains one
of the reasons for the reported dissociation between BMD and
bone strength; that is, bone strength improved without increased
bone density in the later phase of bone regeneration [81,82].
Because of the intrinsic mechanical anisotropy of BAp and
collagen, their directional arrangement generates anisotropy in
bone mechanical property [21]. This mechanical anisotropy
increases as the BAp/collagen orientation becomes prominent.
Therefore, Young’s modulus parallel to the BAp c-axis/collagen



Fig. 3. Relationship between extracellular matrix orientation and anisotropy in bone mechanical property. (a) A schematic illustration of bone microstructure as a composite
of biological apatite (BAp) and collagen. The BAp c-axis is almost parallel to the collagen fiber direction. (b) A schematic illustration of unidirectionally oriented BAp/collagen
microstructure and resultant anisotropic mechanical properties. In this situation, the preferentially oriented direction (horizontal) shows higher mechanical properties. (c) A
schematic illustration of randomly oriented BAp/collagen microstructures and isotropic mechanical properties. Arrows in (b) and (c) represent parameters for mechanical
properties such as Young’s modulus and toughness.

Fig. 4. Distribution of the biological apatite (BAp) c-axis/collagen orientation in the
mandible. The cortical bone portion apart from the tooth ( ) essentially exhibits a
unidirectional orientation along the mesiodistal axis. The portion located beneath
the tooth ( ) exhibits orientation along the biting direction [20].
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orientation direction may increase without a significant increase
in BAp density (BMD).

The degree of BAp c-axis orientation significantly and positively
correlated with the mechanical parameter of bone not only in
regenerated bone, but also in other bones such as intact and
pathological bones [83,84]. Interestingly, this correlation was also
seen in tooth dentin [85]. Thus, the BAp c-axis orientation is a
potent parameter for bone quality and may be useful in evaluating
and predicting mechanical properties of various types and
conditions of biological hard tissues. However, mXRD analysis
introduced here is invasive. Less invasive or noninvasive analytical
methods should be established for clinical evaluation of the BAp
c-axis orientation. One possible candidate is to analyze a speed of
ultrasound that has been demonstrated to be associated with the
degree of BAp orientation [86].

3.3. Usefulness of the BAp c-axis orientation in bone assessment, bone
medication, and implantology

Because the BAp c-axis orientation determines bone mechani-
cal properties, this parameter is beginning to be applied to bone
assessment, bone medication, and optimization of dental and
orthopedic implants. The degree of bone regeneration [21,87] and
the pathological conditions of diseased bone including some types
of osteoporosis [88–90], osteoarthritis [91], osteopetrosis [92], and
cancer metastasis [83,84] were reported to be assessed using the
degree of BAp orientation. For example, in the primary type
osteoporosis induced by estrogen deficiency, the degree of BAp
c-axis orientation both in the cortical and trabecular bone of
lumber vertebrae increases along the craniocaudal axis in which
principal stress is applied [88]. In this situation, the bone appear to
increase the degree of BAp orientation to enhance mechanical
anisotropy along the loaded direction to bear the increased stress
due to osteoporotic bone loss. For bone medication, the effects of
anti-osteoporotic agents such as alfacalcidol, risedronate, alendr-
onate, minodronate, and teriparatide on the BAp orientation have
been investigated [88,93–95], revealing that some agents can
prevent the excessively increased BAp orientation which might be
a risk for weakness against abnormally-directed load.

Recently, implants have been designed to induce bone tissue
with optimal BAp/collagen orientation. Grooved structures at a
certain angle on implant surface were confirmed to successfully
induce preferential BAp/collagen orientation [22,96] which
continuously changed from inside the groove to the host bone
through the bone tissue inside the groove (Fig. 5). These results
suggest that the optimally oriented grooves transmit the load to
the bone tissues surrounding implants through the grooves, which
is evidenced by increased osteocyte number and highly aligned
osteocytes along the principal stress direction in the grooves. With
the use of metallic implants, the stress shielding phenomenon due
to the large difference in Young’s moduli between bone and
implant materials is a great problem [97]. Stress shielding induces
significant bone loss and disruption of bone quality [98,99], leading
to an increased fracture risk. An optimally oriented groove
structure on the implant surface is a promising method to
overcome the stress shielding phenomenon and achieve bone
tissue with appropriate bone quality. In 2017, a dental implant with



Fig. 5. Effect of optimally oriented grooves on the implant surface upon the bone microstructure of biological apatite (BAp)/collagen orientation. (a) Implant designs and
implantation in rabbit tibia with application of repetitive load. (b, c) Schematic illustrations of the preferentially oriented BAp/collagen with groove angles of �60� and +60� .
Only with the +60� groove, the direction of the BAp/collagen fiber orientation continuously change from inside of the groove to the host tibia bone through the bone tissue
inside the groove. This figure is quoted from Ref. [22], which is licensed under CC BY-NC-ND.
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an oriented groove structure on its neck will be commercially
available in Japan.

3.4. Artificial induction and control of the BAp orientation

To achieve control of bone mechanical properties or enhance-
ment of bone mechanical properties during bone regeneration,
artificial induction of the BAp orientation is effective. The artificial
induction of the BAp orientation has been attempted on the basis
of two strategies, with and without stress loading: forcibly
imposing mechanical stimuli to bones to facilitate an adaptive
response to change the degree of BAp orientation [100] as
mentioned above, and usage of anisotropically patterned sub-
strates to align bone forming osteoblasts to secrete oriented
extracellular matrix. Here, the latter strategy is introduced.

Cell alignment caused by surface patterning is well-known as
contact guidance. Recent investigations revealed that osteoblast
alignment is very important for the production of oriented BAp/
collagen structure. Osteoblast alignment can be achieved using
metallic substrates with uni-directional periodic steps induced
by plastic deformation [101,102] or laser-induced periodic
surface structures (LIPSS) treatment [103], or collagen substrates
with anisotropic molecular arrangement [104]. Osteoblast-
produced collagen fibers and c-axis of precipitated BAp crystals
show preferential orientation along the cell-elongated direction.
Importantly, the degree of preferential BAp c-axis orientation
positively correlates with the degree of osteoblast alignment; that
is, highly aligned osteoblasts produce highly oriented extracellular
matrix. Osteoblast alignment determines extracellular matrix
orientation; thus, control of cell alignment is a potent method to
achieve the bone-mimetic anisotropic BAp/collagen composite
microstructure. This methodology might be beneficial to induce
oriented bone structures and related favorable mechanical
properties in the early phase of bone regeneration in which a
randomly organized woven bone with insufficient strength is
predominantly formed.

In summary, the preferential BAp/collagen orientation is
responsible for anisotropic mechanical properties of bone,
therefore, considering this in bone evaluation, bone therapy,
implant development, drug discovery, and so on, is crucially
important for bone that functions in anisotropic stress field.
4. Bone quality based on osteocytes

4.1. Osteocytes in bone tissue

Osteocytes, which differentiate from osteoblasts on the bone
surface, reside in osteocyte lacunae in bone matrix and comprise
90–95% of all adult bone cells [105]. Osteocytes have been thought
as enigmatic cells since their function has remained unclear for a
long time due to the difficulty of establishing osteocyte cultures in
vitro. From this view point, histological analyses have been mainly
performed to speculate osteocyte function. However, osteocyte
function has been incrementally clarified since the isolation of
avian osteocytes and osteocyte-like cells (MLO-Y4; derived from
mouse long bones) in 1992 [106] and 1997 [107], respectively.
Furthermore, molecular and transgenic technologies have been
radically developed. Hence, a greater number of investigations on
osteocyte function using these novel approaches are performed.
However, MLO-Y4 expresses undetectable levels of osteocyte
specific genes such as dentin matrix protein 1 (Dmp1) and Sost [108],
although osteocytes highly express these genes in three-dimen-
sional environments. Thus, understanding the original functions of
osteocytes remains challenging even when using MLO-Y4 cells.

An expression pattern of specific markers is dramatically
changed when osteoblasts differentiate into osteocytes. Osteoblasts
abundantly express core-binding factor alpha 1 (Cbfa1)/Runt-
related transcription factor 2 (Runx2) [109], osterix [110], alkaline
phosphatase [111], and type I collagen [112], whereas osteocytes
abundantly express phosphate-regulating neutral endopeptidase on
the phosphatase-regulating neutral endopeptidase on the chromo-
some X (PHEX) [113], matrix extracellular phosphoglycoprotein
(MEPE) [114], E11 (podoplanin) [115], DMP1 [116], sclerostin [117]
and fibroblast growth factor 23 (FGF23) [118]. Alteration in these
cell-specific markers during differentiation is one of characteristics
of osteocytes. The expression of osteocyte-specific proteins is
correlated with the regulation of cell apoptosis, viability, autophagy,
cell signaling and mechanical sensing [119,120].

The formation of dendrite processes is another characteristics
of osteocytes during osteoblast embedment into bone matrix.
Dendrite processes contact the processes of adjacent osteocytes,
osteoblasts, and bone lining cells on the bone surface through gap
junctions [121,122]. Gap junctions, which are formed by connexins
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(Cx), are transmembrane hemichannels that allow molecules with
molecular weights approximately <1 kDa such as small metabo-
lites, ions, and intracellular signaling molecules to transit through
them. Ubiquitously expressed Cx43 has been identified in primary
osteocytes in vivo [123] and MLO-Y4 cells [107]. Cx45 is also
expressed in MLO-Y4 cells [124]. Gap junctions including Cx are
associated with cell proliferation, differentiation, apoptosis,
autophagy, cell signaling and mechanical sensing as well as
osteocyte specific proteins, as mentioned above [121,122].

Recently, the NIH defined bone quality as comprising bone
architecture, bone turnover, bone mineralization and micro-damage
accumulation [19]. In our study using dental implants, mechanical
repetitive loading improved bone architecture by upregulation of
osteocyte number and dendrite processes with preferential align-
ment of BAp c-axis/collagen fibers [22,125]. Moreover, we also
demonstrated that preferential alignment of osteocytes is in
accordance with the principal direction of mechanical load in an
animal model using hip implants [96]. Therefore, not only BAp c-
axis and collagen fibers, but also osteocytes are thought to play
important roles in controlling the current concept of “bone quality”.

4.2. Mechanosensation in osteocytes

Bone tissue constitutively receives dynamic and/or static load
such as gravity, daily movements and various exercises. Appropri-
ate mechanical load increases bone mass, whereas mechanical
unload induces bone loss [126]. This indicates that bone tissue is
highly mechanosensitive [127]. However, it is unclear which bone
cells have this ability and how these cells sense whole bone loads
must be distinguished.

Several mechanisms by which bone tissue reacts in response to
mechanical stresses have been revealed. Mechanical loads are
mainly converted into mechanical stimuli such as fluid shear
stress, hydrostatic pressure, and direct cellular deformation.
Applied mechanical loads are received as mechanical strain in
bone tissue. It is thought that 1000–3000 microstrain in bone
matrix increases bone mass, whereas 100–300 microstrain
decreases bone mass according to the mechanostat theory
[8,128]. Mechanical strain induces matrix deformation surround-
ing osteocytes and dendrite processes. Matrix deformation then
creates fluid shear stress surrounding the dendrite processes of
osteocytes. Finally, osteocytes sense the fluid shear stress and
promote signaling molecules [129,130]. From this viewpoint,
osteocytes, not osteoblasts and osteoclasts, are the most relevant
cells that respond to mechanical stimuli.

Cx43 has been thought to be one of the key regulator molecules
in osteocyte responses to mechanical stimuli. Cx43-related hemi-
channels are normally closed under physiological conditions.
These hemichannels in osteocytes release anabolic factors such as
prostaglandin E2 and adenosine triphosphate (ATP) in response to
mechanical loads in vitro [131,132]. Moreover, AKT kinase
activation play a crucial role in opening Cx43-related hemi-
channels under mechanical loaded conditions [133]. Hence,
Cx43 has been thought to be requisite for sensing mechanical
loads. However, interestingly, some recent studies have shown that
deletion of Cx43 in osteocytes increased bone mass in response to
mechanical loads [134,135]. These experimental results contradict
those of previous studies, indicating that the role of Cx43 in
osteocytes under loaded conditions must be further elucidated.

Morphological and numerical alterations in osteocytes occur in
response to mechanical stimuli. Morphological differences be-
tween fibula and calvarial osteocytes have been demonstrated;
because fibula osteocytes are more elongated whereas calvarial
osteocytes are more spherical. These morphological changes are
believed to be caused by the type of mechanical loading because
preferential load in the fibula and calvaria are unidirectional and
bidirectional, respectively [136]. Moreover, it has been demon-
strated that spheroid MLO-Y4 cells, which are partially adherent or
suspended, had stiffness <1 kPa, whereas flat MLO-Y4 cells, which
are adherent, has stiffness >1 kPa [137]. These phenomena
occurred via osteocyte deformation under fluid flow [138]. The
authors concluded that spheroid osteocytes are more mechano-
sensitive than flat osteocytes [137]. Recently, we have demon-
strated that osteocytes become more spherical with increased
dendrite processes under loaded conditions. Additionally, the
number of osteocytes around dental implants significantly
increased under loaded conditions, strongly suggesting that
mechanical stimuli via dental implants change osteocyte shape
and development of osteocyte network [125]. Hence, morphologi-
cal alterations of osteocytes in response to mechanical stimuli may
play an important role in controlling bone quality.

We have demonstrated that preferential orientation of osteo-
cytes within grooves of hip implants occurred along the principal
direction of mechanical load in beagle dogs [96]. However,
osteocytes can access perilacunar calcium (osteocytic osteolysis)
during periods of calcium depletion and synthesize new matrix
upon calcium repletion [139], which suggest that determination of
preferential alignment and osteocyte shape are not always
dependent on mechanical stimuli. Preferential cell alignment of
osteoblasts (see Section 3-4) and osteocytes may be key factors
regulating bone quality.

More recently, some studies have suggested that the primary
cilium is also a mechanosensor in osteocytes. The primary cilium
is a single, immotile organelle that extends from the cell surface
of nearly every mammalian cell including osteocytes [140,141]. It
has been reported that osteocytes respond to fluid flow with cilia-
dependent increases in cyclooxygenase-2 gene (COX-2) expres-
sion and prostaglandin E2 production [142]. Moreover, conditional
deletion of polycystic kidney disease 1 (Pkd1), which is linked to
the primary cilium, impaired skeletal mechanosensing in mouse
osteoblasts and osteocytes [143,144]. Therefore, the primary
cilium in osteocytes may also play a role as a mechanosensor.
However, further studies are required to clarify the direct
relationship between the primary cilium in osteocytes and
mechanical loading.

4.3. Osteocytes improve bone quality through drug therapies

Osteoporosis is defined as a disease characterized by low bone
mass and microarchitectural deterioration of bone tissue, leading
to enhanced bone fragility and a consequent increase in fracture
risk [145]. It is mainly treated by several types of drugs such as
bisphosphonates, monoclonal antibody against receptor activator
of nuclear factor-kappa B ligand, parathyroid hormone (PTH),
vitamin D3, calcium drugs, selective estrogen receptor modulators,
and female hormone drugs. For instance, bisphosphonates
suppress osteoclast activity by inhibiting key enzymes of the
intracellular mevalonate pathway, which increases bone mass
[146]. Moreover, intermittent PTH administration downregulates
the production of sclerostin in osteocytes, which also increase
bone mass [147]. These drugs both affect bone quantity, albeit
though different modes of action. PTH therapy rapidly upregulates
bone-formation markers, followed by upregulation of bone-
resorption markers [148]. Hence, intermittent PTH administration
improves not only bone quantity, but also bone quality by
controlling bone cells such as osteocytes, osteoblasts, and
osteoclasts in a balanced manner. Conversely, bisphosphonate
therapy strongly inhibits the function of osteoclasts. Thus,
prolonged use of bisphosphonates may lead to unrepaired
microdamage of bone tissue, resulting in accumulated micro-
damage in bone and fracture risks of femoral heads. Indeed,
fracture of femoral heads is an adverse effect of bisphosphonate
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therapies [149]. Therefore, bisphosphonate therapies may enhance
bone quantity without improving bone quality.

In summary, osteocytes are predominant mechanosensors in
bone cells. However, the mechanisms by which osteocytes in jaw
bone sense mechanical stimuli remain unclear, since osteocytes in
jaw bone may differ from those in long bones. Further studies to
investigate the effect of mechanical stimuli on osteocytes in vitro
and in vivo are required to clarify osteocyte-associated bone quality
as well as BAp and collagen fibers.

5. Conclusion and future direction

Since the NIH consensus was published in 2000 [16], various
types of bone quality parameters were proposed. Of these, recent
investigations have revealed promising ones that significantly
reflect mechanical properties of bone. It might be productive that
such potent bone quality parameters are utilized into dental and
medical fields for bone diagnosis and therapy, additional to BMD.
For clinical use, however, the mechanisms underlying the control
of each bone quality parameter and interaction among them
need to be understood. As discussed in this article, jaw bone has
unique characteristics in terms of collagen, BAp orientation and
osteocytes. This is most likely due to the different developmental
origin (neural crest-derived) and unique mechanical loading
circumstances of the jaw bones in comparison with other skeletal
bones. Therefore, it is of great importance to accumulate
scientific evidences that support the clinical diagnosis of the
jaw bone status [150–152]. Additional research is currently
underway to clarify the mechanisms including genetic, molecu-
lar, cellular, and tissue-related events and the understanding is
becoming deepened. The relationships between BAp/collagen
orientation and other bone quality parameters introduced in this
review – collagen chemistry and osteocytes – are now becoming
clarified. A negative relationship between the amount of AGE
cross-links and the degree of BAp orientation is also suggested
[85]. Moreover, synchronous alteration of anisotropic features in
osteocyte network and BAp/collagen arrangement was reported
[83,84,153,154]. Future studies are expected to provide insight
into the potential applications of bone quality parameters for
clinical use in prosthodontic dentistry as well as orthopedic
fields.
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